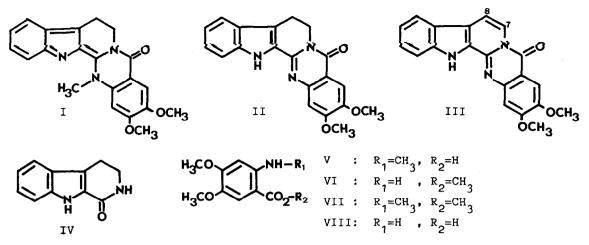
Tetrahedron Letters No.47, pp. 4865-4866, 1968. Pergamon Press. Printed in Great Britain.

NEW QUINAZOLINOCARBOLINE ALKALOIDS FROM EUXYLOPHORA PARAËNSIS HUB.

L.Canonica, B.Danieli, P.Manitto, G.Russo Istituto di Chimica Organica dell'Università Centro Naz. Chim. Sost. Org. Nat. del CNR - Milano (Italy) G.Ferrari Simes S.p.A., Lab. Ricerche Chimiche - Milano


(Received in UK 6 August 1968; accepted for publication 22 August 1968)

<u>Euxylophora paraënsis</u> Hub. (Rutaceae) is a Brazilian plant called "Páo Amarello" (1). Alumina chromatography of the methanolic extract of the bark of this plant has allowed the separation of three new,optically inactive,alkaloids : euxylophorine(I), $C_{21}H_{19}N_{3}O_{3}^{(*)}$ (yield 0.3%),orange-red needles from anhydrous benzene,m.p. 227-30°; euxylophoricine A (II), $C_{20}H_{17}N_{3}O_{3}$ (0.03%),colourless needles from chloroform-methanol,m.p. 295-8°; euxylophoricine B (III), $C_{20}H_{15}N_{3}O_{3}$ (0.01%), yellow prisms from chloroform-methanol, m.p. 310-12°.

Euxylophorine(I) had the following spectroscopic characteristics : $v_{max.}^{nujol}$ 1670, 1656,1618,1603,1545 cm⁻¹; $\lambda_{max.}^{CH_3CN}$ 253,402 mµ (log ε 4.44 , 4.60). Its n.m.r. spectrum(60 Mc , C_5D_5N) showed two symmetrical triplets, each of two protons, centered at 3.30 and 4.75 δ (\geq C-CH₂-CH₂-N \leq), two singlets at 3.90 and 3.96 δ (2 -OCH₃) a singlet at 5.23 δ ($>N-CH_3$) and a complex multiplet between 7.2 and 8.2 δ corresponding to six aromatic protons. Treatment of I with refluxyng amyl alcoholic potash afforded 1-tetrahydronorharmanone(IV)(2) and 6-methylaminoveratric acid(V) (m.p. 167-8°, $v_{max.}^{nujol}$ 3400,2700-2500,1656 cm⁻¹, the n.m.r. spectrum included two singlets at 7.40 and 6.12 δ corresponding to two aromatic protons). An authentic sample of V was prepared by treatment of methyl 6-aminoveratrate(VI)(3) with dimethyl sulphate in CHCl₃ followed by alkaline hydrolysis.

On the basis of these results, structure I was assigned to euxylophorine. Conclusive proof of this was obtained by the synthesis of I which was achieved via the condensation of IV with VII(m.p. 82° from ligroin) with POCl₃ in refluxing

^(*)Molecular weights were determined by M.S. ; all compounds mentioned in this paper gave satisfactory elemental analysis.

toluene.

The second alkaloid, euxylophoricine A (II), showed $v_{max.}^{nujol}$ 3300-3200,1650, 1615,1590 cm⁻¹; $\lambda_{max.}^{MeOH}$ 255,337,253,360 mµ (log ε 4.50,4.49,4.54,4.43). Accorto its n.m.r. spectrum (CDCl₃), euxylophoricine A (II) contained the system \geq C-CH₂-CH₂-N< (two symmetrical triplets at 3.10 and 4.60 δ), two -OCH₃ groups (two singlets at 3.85 and 3.80 δ), a proton on nitrogen and six aromatic protons (multiplet between 7.2 and 7.9 δ). Hydrolysis of II with amyl alcoholic potash gave IV and δ -aminoveratric acid(VIII)(3), identified by comparison with authentic samples. The structure II for euxylophoricine A was confirmed by synthesis(IV+VI) accomplished following the procedure as described for the synthesis of J.

The third alkaloid, euxylophoricine B (III), exhibited $v_{max.}^{nujol}$ 3350,1656,1634, 1600,1575 cm⁻¹; $\lambda_{max.}^{EtOH}$ 256,294,304,330,353,372,392 mµ (log ε 4.54,4.40,4.53, 4.37,4.27,4.45,4.51). Evidence for the presence of a double bond at C_7-C_8 in III resulted from its n.m.r. spectrum (CF₃COOH) which lacked signals for the $\sim C-CH_2-CH_2-N <$ system present in II and showed an AM pattern at 8.20 and 9.13 δ (J=7 cps). The formation of euxylophoricine B on Se dehydrogenation of II at 2930[°] confirmed the proposed structure III.

These alkaloids represent the first examples of quinazolinocarboline alkaloids with substituents on the aromatic ring which arises biogenetically from an anthranilic acid unit (4).

REFERENCES

- (1) Bol. Mus. Para', VI, 84 (1910).
- (2) R.H.F.Manske and R.Robinson, J.Chem.Soc., 240 (1927).
- (3) Zinke and Franke , <u>Ann</u> , <u>293</u> , 190 (1896).
- (4) M.Yamazaki, A.Ikuta, T.Mori and T.Kawana, <u>Tetrahedron Letters</u>, 3317 (1967).